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1. Introduction




Agriculture Scenario

e Sugarcane is one of the most planted cultures in the planet;
e Brazil is the largest producer of sugarcane and ethanol in the world;

e Around 10,123.5 Mha planted in the 2018/2019 harvest;

e |mpacts.




Precision Agriculture (PA)
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Figure: Example of precision agriculture equipment developed for farm management and tasks such as high precision
positioning systems, laser land levelling, and precision seeding/fertilizer/irrigation/harvesting, extracted from (LI et al., 2020).
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Unmanned Aerial Vehicles (UAVs)

Figure: Example of sugarcane crop image taken by a UAV composing an orthomosaic.



Motivation

e Changes in the crop scenario:
o Seeding failures;
o Death;
o Erosion;
o Plant tipping;

o Animal interventions.



Motivation

Figure: Example of crop-row identification performed manually by an expert (left). Example of an autonomous machinery it is
being guided by the detected crop rows. CommandCenter™ Premium produced bu John Deer, extracted from
https://www.agriexpo.online/prod/john-deere/product-169419-2710.html 3




Motivation - state of the art

e Hough transform:
o BELTRAMETTI; ROBBIANO, 2012;
e Otsu Method:
o MONTALVO et al., 2013; etc.;
e Convolutional Neural Networks:
o PANG et al., 2020; etc.
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2. Fundamentals




Convolutional Neural Network (CNN)
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Figure: Example of a network with convolutional layers, extracted from
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html 12
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Figure: A convolution filter, extracted from
https://cdn-images-1.medium.com/max/1600/1*EuSjHyyDRPAQUdKCKLTgIQ.png
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Image Segmentation

e Subdivide an image into specific regions;
e One of the most difficult steps in Digital Image Processing (DIP);

e Directly impacts the result of other processing steps;
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Semantic Segmentation

e Semantic Segmentation Networks (SSNs);
e Various levels of abstraction;
e Examples of SSNs/CNNs: U-net, PSPNet, LinkNet, etc.
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Semantic Segmentation
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Figure: Example of a semantic segmentation performed in some images, their results,as well their classifications and
respective percentage score per segment/label.Extracted from (NAGATA et al., 2020)
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Genetic Algorithm

e Rely on bio-inspired operators such as mutation, crossover and selection;

e Starts with an initial population of individuals, where each-one is assumed
to be a solution to the problem to be solved.
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Radon Transform

e Spectral reconstruction of an object;

e A projection of a 2-D image f(x, y) is a set

of line integrals;

e Reconstruction based on projections of

lines;

Figure: Example of Radon transform being applied to a
object reconstruction, extracted from
https://www.globalsino.com/EM/
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4. Methodology




Datasets

e Four test mosaic images of different
sizes;

e SenseFly S.O.D.A. camera 5472 x 3648
pixel resolution (RGB lens F/2.8-11, 10.6
mm);

e GSD: 0.053 meters (5 cm of ground per
pixel).

Figure: fixed-wing UAV SX2 made by Sensix Innovations
and responsible for capturing the imagery used in this
work.
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Datasets
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Figure: Test images used to evaluate our approach and their respective sizes: (a) 11180x8449; (b) 19833x30255;
(€) 17497%x10771; (d) 16677x24181. 21




Plant Cane and Ratoon Cane
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Figure: (a) example of cane in the ratoon phase. (b) example of plant cane.




Segmentation Reference
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Figure: Examples of crop lines and the segmentation provided by an




Evaluation metrics

e Dice Similarity Coefficient (DSC):
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e Jaccard Similarity Coefficient (JSC):
ANB ANB
J(A,B)zl—l |—1 | |

IAUB| =~ |A|+|B|-]ANB|

24




Evaluation metrics

[ ] correctly detected  [] Undetected by our method [l Region without crop line and detected as line

Figure: Visual representation of crop row evaluations.
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Methodology Flux
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Segmentation using Genetic Algorithm

e 2700 generations, population 200 individuals;

e Mutation rate of 0.05 and crossover rate of 0.8;

e 35 training images of sugarcane crops with sizes from 450 to 1136 pixels;
e Different ages and width of cane extracted from the 4 test maps;

e DSCto compare results.
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Segmentation using Genetic Algorithm

Training step
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Figure: Flow chart of the first approach based on Genetic Algorithm and Radon transform. 28




Semantic Segmentation Network
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Figure: Architectures used for semantic segmentation. Adapted from (YAKUBOVSKIY, 2019).
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Semantic Segmentation Network
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Semantic Segmentation Network

e CNN training with dataset A;

e Crops of 256x256 pixels, with 256 pixels of stride;

e Only areas with at least 80% of useful information were considered,;

e Data augmentation methods: rotations, translations, scaling and shearing;

e 0.001 learning rate for 50 epochs;
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Figure: Problems encountered after the segmentation step: (a) Original image; (b) Planting lines provided by an expert;
(c) Image after segmentation.
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Line Reconstruction and Refinement
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5.Experimental Results




Segmentation using Genetic Algorithm

e We applied a K-fold evaluation (5 folds) as GA is stochastic;
e Different thresholds (local and global);

e Different stride and windows values for the local threshold.
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Segmentation using Genetic Algorithm
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Figure: Average Dice coefficient and standard deviation for different images for 5 different GA kernel masks.
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Figure: Results for different sections of the map: (a)
Original image; (b) Expert's segmentation; (c) Manual
threshold (= 0.8); (d) Global Otsu; (e) Local Otsu (W=
50 and $= 25).



Segmentation using Genetic Algorithm
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Figure: Dice coefficient for various global threshold values.
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Segmentation using Genetic Algorithm

0-74 T T Ll T T Ll
0.72
2 07
L
o
E_ 0.68
O 0.66
@
2 /
2 e /\
! = = = TestImage (a)
0.62" Test Image (b)
- = = TestImage (c)
0.6 i : i ; Test Image (d)

Global W=50 W=100 W=100 W=200 W=200 W=200 W=400
Otsu  s=25 S$=25 S$=50 S=25 S$=50 $=100 S$=50

Figure: Dice coefficient obtained using Global Otsu and Local Otsu for different combinations of WindowWand Stride S.
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Segmentation using Genetic Algorithm
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Figure: Dice coefficient obtained for the line reconstruction for different combinations of Window W and Stride S.
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Semantic Segmentation

e We applied a K-fold evaluation (10 folds);

e Datasets A B, C, and D, with 678, 3291, 1550 and 2162 images
respectively;

e We experimented the classification of dataset A with the three SSNs;
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Semantic Segmentation

Segmentation Network Dice Coefficient

VGG16 - LinkNet 0.90 4+ 0.0062
VGG16 - PSPNet 0.88 4 0.0075
VGG16 - Unet 0.87 + 0.0113

Table: Segmentation results obtained with the application of the segmentation net-works in Dataset A.
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Figure: Results obtained for each segmentation networks. Top row shows the loss function, while the bottom row shows the
Dice coefficient: (a) LinkNet (b) PSPNet and (c) U-net.
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Semantic Segmentation

Dataset Dice Coefficient

A 0.90 £ 0.0062
B 0.80 = 0.0702
C 0.84 £ 0.0724
D 0.86 £ 0.0588

Table: Result obtained with the application of the LinkNet network trained in dataset A to segment other datasets.
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Semantic Segmentation
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Figure: Average Dice coefficient obtained for different selection approaches during the crop line reconstruction. 45
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Semantic Segmentation
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Figure: Examples of images where there was an
improvement in the Dice coefficients after line
reconstruction using the Radon transform. (a)
Original image;(b) Segmentation provided by the
expert; (c) Segmentation obtained using LinkNet; (d)
Line reconstructed
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Semantic Segmentation
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Comparison of approaches

e Genetic Algorithm based technique:
o requires less training images than Semantic Segmentation;
o used only 27 parameters (3x3x3 kernel mask) to optimize the training, while

SSN used millions;
o showed a better DSC with local Otsu threshold not reaching 0.78 versus 0.90

from SSN.
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Comparison of approaches

e SNN based technique:

o much more constant Dice coefficient;
manages to extract several different levels of abstraction, each of these levels

focusing on a different type of feature, such as border, texture, etc;
o tends to be more capable of operating in different stages of the crop

regardless of color contrast;

©)
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6. Conclusions
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Conclusion

e Methodology to segment crop lines from UAV images:

o  Genetic Algorithm approach associated with Otsu method,;

o A new approach based on LinkNet SSN to perform the segmentation step;

e Line reconstruction approach based on the Radon transform;

e Results indicate that our SSN approach is a feasible solution to the
problem.
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Main Contributions

e Helps spread the use of geolocation and autonomous vehicles in crops;
e More efficient application of inputs;

e Better efficiency of the land areg;

e Reduction in the production coast;

e Increase of profits based on non-perennial harvests;

e Considerable less aggression to the environment.,
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Future Work

The results obtained by this work demonstrate the good performance
obtained by the proposed approach and motivate new lines of investigation,
such as:

Evaluation of datasets of different cultures besides sugar cane;
Explore how mosaic alignment techniques interfere in the result;
Explore the use of other sensors in association with the images to
produce better results;

Study new methods to enhance crop reconstruction of regions with
highly-curved lines.
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Thanks!

Questions and Discussions




